Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Waste Manag ; 179: 120-129, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38471250

RESUMEN

Traditional cathode recycling methods have become outdated amid growing concerns for high-value output and environmental friendliness in spent Li-ion battery (LIB) recycling. Our study presents a closed-loop approach that involves selective sulfurization roasting, water leaching, and regeneration, efficiently transforming spent ternary Li batteries (i.e., NCM) into high-performance cathode materials. By combining experimental investigations with density functional theory (DFT) calculations, we elucidate the mechanisms within the NCM-C-S roasting system, providing a theoretical foundation for selective sulfidation. Utilizing in situ X-ray diffraction techniques and a series of consecutive experiments, the study meticulously tracks the evolution of regenerating cathode materials that use transition metal sulfides as their primary raw materials. The Li-rich regenerated NCM exhibits exceptional electrochemical performance, including long-term cycling, high-rate capabilities, reversibility, and stability. The closed-loop approach highlights the sustainability and environmental friendliness of this recycling process, with potential applications in other cathode materials, such as LiCoO2 and LiMn2O4. Compared with traditional methods, this short process approach avoids the complexity of leaching, solvent extraction, and reverse extraction, significantly increasing metal utilization and Li recovery rates while reducing pollution and resource waste.


Asunto(s)
Litio , Metales , Suministros de Energía Eléctrica , Electrodos , Reciclaje , Iones
2.
Waste Manag ; 169: 32-42, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393754

RESUMEN

The facile recycling of spent lithium-ion batteries (LIBs) has attracted considerable attention because of its great importance to environmental protection and resource utilization. A novel process is developed for cyclic utilization of spent LiNixCoyMnzO2 (NCM) batteries. The spent NCM was converted into water-soluble Li2CO3, acid-dissolved MnO, and nickel-cobalt sulfides through selective sulfidation, based on roasting condition optimization and thermodynamic calculation. More than 98 % of lithium is extracted preferentially from calcined NCM through water leaching, and over 99 % of manganese is extracted selectively from water leaching residue with H2SO4 solution of 0.4 mol/L in the absence of additional reductant. The nickel and cobalt sulfides were concentrated into the leaching residue without metal impurities. The obtained Li2CO3, MnSO4, and nickel-cobalt sulfides can be regenerated as new NCM, showing good electrochemical performance, and its discharge capacity is 169.8 mAh/g at 0.2C. After 100 cycles at 0.2C, the discharge specific capacity can still be maintained at 143.24 mAh/g, and its capacity retention ratio is as high as 92  %. An environmental assessment and economic evaluation indicate that the process is an economical and eco-friendly approach for green recycling of spent LIBs.


Asunto(s)
Litio , Níquel , Cobalto , Suministros de Energía Eléctrica , Reciclaje , Sulfuros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...